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Hydromagnetic free convective flow past an infinite vertical, porous plate In the 
presence of a uniform transverse magnetic field has been considered taking Hall 
effects into account. Approximate solutions for the mean velocity, mean tempera- 
ture and their related quantities are obtained. The influence of various dimension- 
less parameters is discussed 
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Recently considerable attention has been given to 
hydrodynamic and hydromagnetic boundary layer flows 
with or without Hall current effects. Convective flow of a 
viscous incompressible fluid past an infinite vertical plate 
was studied by Soundalgekar’ -4 and Gupta5. Pop and 
Soundalgekar6 investigated the effects of Hall current on 
steady hydromagnetic boundary layer flow past a porous 
plate. This analysis was extended by Datta and Mazum- 
der7 who considered free convection effects in the vertical 
plate configuration. In this investigation the effects of Hall 
current on the unsteady hydromagnetic free convective 
flow past a vertical porous plate, when the free stream 
oscillates about a constant non-zero mean. is considered. 

Basic equations of motion 

The basic equations governing the physics of the problem 
are: 

VxE=O VxJ=O 

J=a E+peqx H-$JxH 
I? 1 

a4 %+(q.V)q= -+p+F’q+gfl(T-T,)+?x H 

dT 
dl+(qV)T=&r2T+& 

PC, 
(1) 

P 

where the physical quantities have their usual meaning 
and assuming that the fluid is electrically quasi-neutral 
and ion slip and thermoelectric effects are negligible. 

Since the plate is infinite, all physical quantities, 
except pressure, are functions of y’ and t’ only. The 
equation of continuity V. q=O, gives u’ = - uO(uO >O), 
where q=(u’,u’,w’). It is assumed that the induced mag- 
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netic field is negligible so that H=(O,H,,O). This assum- 
ption is justified when the magnetic Reynolds number is 
very small’. The equation of conservation of electric 
charge V. J= 0 gives j,,, =constant, where J= (i,,, jY,, j,,). 
This constant is zero since j,. = 0 at the plate, which is 
electrically non-conducting. Thus j,. = 0 everywhere in the 
flow. We consider here the ‘short circuit’ case so E= 0. 
Under these assumptions, the flow is now governed by: 

(3) 

(5) 

The boundary conditions are: 

u’=O w’=O T’ = T; at y’=O 

a’--+ tY(t’) = U,(l +.seio’r’) (6) 

w’=O T’+T, as y’-+ cc 

where o’ is the frequency of the fluctuating stream, (I, the 
mean free stream velocity and sUO the amplitude of the 
free stream fluctuations. From Fqs (2) and (4), we have for 
the free-stream : 

auf ap ap;H;U ___- Pdt’= -ax,- l+m2 Pm9 (7) 

ap apiH;rnU 
o=-(?x’+ l+m2 (8) 
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From Eqs (2)-(8), we obtain: 

o\ 7- = Lu - 

¢ V' -t-mw'] 

+g(P~o - P) (9) 

Y'/)0 y = - -  
V 

U' 
U = 

Uo 

U' 
U = - -  0 = - -  

Uo 
pvC v P =- -~- -  (Prandtl 

v o f l ' ( T ' -  T~) 
G -  U ov~ ° 

• ~ o~ , ,  v ' ) - w ' ]  
( e w '  Ow"~ ,~w'  ~r ~U ~ 

- 

From the equation of state, we have: 

g(P oo -- p )=gfl 'p(  T ' - -  T~o ) 

where ff is the coefficient of volume expansion. 
Introducting non-dimensional quantities: 

t'v20 VO)' 
t =  t O = - -  

v v 2 
W ~ 

Uo 

T ' -  T~ 

T ' -  T£ 

number) 

(Grashof number) 

Uo 
E -  (Eckert number) 

Cv(T~ -- T~) 

2 2 
M2_Crp~Hov (magnetic parameter) 

d 

(lO) 

(11) 

into Eqs (5), (9) and (10), the non-dimensional equations 
governing the motion are: 

Ou 

8w 

~U t~U t~2U M 2 
= - - +  - -  ( u - U  + m w ) - G O  (12) 

8y 8t Oy2 1 q- m 2 

OW O2W M 2 
- 8y 2 4- 1--~-~m2[m(u- U) - w] & 8y 

#t 8y P 8y 2 L \ a y ]  \ # y ]  _J 

(13) 

(14) 

The boundary conditions reduce to: 

u = 0  w = 0  0=  1 at y = 0  (15) 

u---~ U(t) w---~O 0---~0 as y---* 

To solve these coupled non-linear equations, we assume 
that the unsteady flow is superimposed on the main steady 
flow. Hence, in the neighbourhood of the plate: 

u = u o +eUl e'°t (16) 

w = Wo +ewle '~t (17) 

0= 0o +e01e '°'t (18) 

and for the free stream: 

U(t)= 1 + g e  i~°t (19) 

where e ~ 1. Substituting Eqs (16)-(19) in Eqs (12)-(14) and 
equating the like terms on both sides: 

M E 
Uo+" -- U'o -- r l  + m2 [('u o -- 1) + mwo] = -- GO o (20) 

M 2 
w'~ + wb + l~-~m2 [m(uo-  1 ) -  Wo] = 0 (21) 

O~ + PO'o + PE[u'o 2 + w~ 2] = 0 (22) 

M 2 
u~ - l~-~m2 [(ul - 1) + mwl] - ie)(u 1 - 1) + u~ = - GO 1 

(23) 

M 2 
wt -I- 1 +m2/"----rm'ut 1 - 1 ) - W l ] - i ° ) w l  +w'l = 0  (24) 

O~ + 2PE(u'ou'x + W'oW'l) + PO'~ - io2eo I = 0 (25) 

where the prime denotes differentiation with respect to y. 
The corresponding boundary conditions reduce to: 

Wo=0 Ul=0 w~=0 0o=0  uo=O 
at y = 0  

UO -----~ 1 
Wl -----~ 0 

Wo---* 0 ut --~0 
0o---~0 0 t ---~0 as y---~ oo 

(26) 

Eqs (20)-(25) are still coupled and non-linear and hence 
difficult to solve. We expand the velocity and temperature 
in powers of E, the Eckert number, assuming that it is very 
small. This is justified in low speed incompressible flows. 
Hence we can write: 

Uo(y ) = U01 (Y) +Euo2(Y) + O(E 2) 

ul (y) = Ull (Y) + Eu12 (Y) + O(E2) 

wo(y) = w01 (y) + Ewo2(Y) + O(E 2) 

wl (Y) = wl 1 (Y) + Ew,  2(Y) + O(E2) 

O0(y ) = 001 (Y) + EOo2(Y) + O(E 2 ) 

O~ (y) = 01 ~ (y) + EO 12(Y) + O(E2) 

(27) 

(28) 
(29) 

(30) 

(31) 

(32) 

First, we proceed to obtain the solution for the mean flow 
and later on these results will be used to get the 
corresponding unsteady flow field, which will be pre- 
sented in a future paper. 

Substituting Eqs (27), (29) and (31) in Eqs (20) to 
(22), we get the following coupled differential equations 
for Uo, Wo and 0o: 

M 2 
u h + u~,,-  1--U~m~ [uol - 1 + mwo, ] -- - O0o, (33) 

M 2 
w~, + wbl + 1---~m2 [m(uot - 1) - Wo, ] = 0 (34) 

M 2 
u~2 + u ~ 2 - ~ [ U o 2  + mwo2] = - GOo2 (35) 

M 2 
W02 + o2 + l ~ m 2  [muo2- -  Wo2] = 0 (36) 

0'~1 + PO'ol = 0 

0~2 + PO'o2 = - P[u'o~ + wb 2 ] (37) 

The corresponding boundary conditions are: 

UO1 = 0  U02 = 0  W01 = 0  W02 = 0  
0ot = 1 0o2 = 0  at y = 0  (38) 

Uol --~ 1 Uo2--~ 0 wol --*0 
W02 ""~ 0 001 --*0 002--*0 as y-- )~  
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Solving Eqs (33)-(37) with these boundary conditions: 

Uo(y) = u01 + Euo2 = [1 - e-"r{(1 - At )cosflt y 
+ bt sinfll+yl - Ate-PY] + EPG~f  le-PY 
+C2 e - ( '  '~cosflty+Cae -I ,+ )~'sinflxy 
+ C4 e - 2ey + C5 e - z~o. + C6 e -  ~,YCOSfl t y 
- Cve - ~'rsinflly] (39) 

wo(y) = wol + Ewo2 = [{(1 - At)sinflly 
- Bt cosfl '  y}e -~'y + B~e -P~] + EPG[Cs e-Py 
+ (C9cosfll y + C t osinfll y)e - (~, + v)y _ C1 le - 2er 
_ C12e- 2~qy__ (Cycosf l ly  + C6sinflty)e-~,r] 

(4o) 

O0(y) = 00~ + EO02 = [e -Py] + EP[ase -Py - a~ e - 2''~' 

- a2 e-I ' '  +P~Y cos fll Y - a3 e-~'~ +ply sin fllY - a4 e-zPy] 

(41) 

where all the constants appearing in Eqs (39)-(41) are 
given in the appendix. 

Knowing the mean velocity field and mean tem- 
perature field we can now calculate the mean skin-friction 
and mean rate of heat transfer from the plate. The mean 
skin friction in x- and z-directions are: 

Zmu=Ctx(1 - A 1 ) - f l l B  t + P A  1 + E P G [ - P C t  
- (~1 + P)C2 + fll C3 - 2PC4 - 2cq C5 - cq C 6 - fll C7] 

and: 

Zm~=~tB~ "t-fl~ ( 1 - A t ) - P B 1  + E P G [ - P C s  
-- (~1 + P)C9 - fll C1 o + 2PC11 + 2~1 C12 + cq C7 
- - f l lC6]  

and the rate of heat transfer due to mean temperature qm 
is: 

dOol 
qm = - dy y= o 

Discussion 

We see from the solution that the steady state flow 
corresponding to e--,0 exhibits a boundary layer 
behaviour. Since the magnetic field is strong, the 
exponent ia l  e -Py decays less rapidly than the other 
exponential terms and hence the thickness of the 
boundary layer is of order 1/P (assuming that P is less 
than, or of order, one). However, when P ~> cq or order of 
~t, I/cq can be taken as a measure of the boundary layer 
thickness. In this case, the boundary layer thickness 
decreases with the increase in the magnetic parameter  and 
increases with the increase in the Hall parameter. When 
the Grashofnumber  G is small (G ~ 1), neglecting terms of 
order G in the solution, we have: 

Uo~_ l-e-~,rcosf l ly  Wo..~ - e-~,rsinflly 

which shows that the primary and the secondary velocity 
distribution are in the form of a logarithmic spiral similar 
to the Ekman velocity spiral for flow past a flat plate in a 
rotating fluid. Thus we may conclude that for small 
magnetic Reynold's numbers, Hall currents play a role 
similar to that of rotation. 

The primary velocity uo(y) is plotted with y in Figs 
1-3. Fig 1 shows that as P and m increase, the primary 
velocity decreases. From Fig 2 we observe that the 
velocity increases with increase in G whereas it decreases 

for negative values of G. Fig 3 shows that increases in 
magnetic parameter  M give primary velocity decreases 
whereas greater viscous dissipation results in primary 
velocity increases. 

In Figs 4-6 the secondary velocity wo(y) is plotted 
against y. Fig 4 shows that due to increase in P the velocity 
wo(y) decreases whereas it increases with increase in Hall 
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0.5 
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0 

Fig 1 
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/ m = l . 0 ~  P= 0.24 
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Mean velocity profile uofor M 2 = 5, G = 5, E = 0.01 
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Fig 2 Mean velocity provile u o for M 2 = 5 ,  m=O.5, 
P=0.24, E=O.O1 
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3 o , , /  
0.4  I ~  E=O.01 

E 0 0 2  

0.2 

0 I I I I I I I I I I I I I I 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

Y 

Fig 3 Mean velocity profile u o for M 2 =5,  m=0.5, 
G = 5 ,  P=0.24 
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1.4 s "" " j ,  
# 1 / - . 

/ 
1.2 / $ 

/ 
I ,m=l .0 

1.0 / ,,,~-- 
I s "p  / I I 

I / 
i / I 

I / m=0.5 - / 
I /  

0.6  r i 0.24 

'~ 0.8 
~o 

0.4 ~_____,.~= 0.71 

0.2 I i ~ P =  1.0 

P=0.24 

m = O . 5  

0 I I I I I I I I I I 
0 0.2 0.4 0.6 0 .8  1.0 

Y 

Fig 4 Mean velocity profile w 0 for M2=5, G=5.0, 
E=O.O I 
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Fig 5 Mean velocity profile w 0 for M2=5, m=0.5, 
P=0.24, E=O.1 
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Mean velocity profile Wo for m=0.5, G=5, 

Figs 7 and 8 for various parameters. Figs 7 and 8 show 
that the mean temperature increases with increase in 
magnetic parameter M and Hall parameter m whereas it 
decreases with increase in E, G and P. 

Numerical values of z.,., z,.w and q,. are given in 
Tables 1 to 5 for M E--- 5.0, m = 0.5, G = 5.0, P = 0.24 and 
E=0.01. 

From the tables we observe that the primary shear 
stress increases with increasing magnetic parameter M, 
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0 .6  
,£ 

0 . 4  

0 .2  
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0 

Fig 7 
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0.2 0.4 0.6 0 .8  1.0 1.2 1.4 
Y 

Mean temperature profile 0 o 

0 
(3) 
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Fig 8 Mean temperature profile Oofor M 2--5, E=O.O1, 
m=0.5 

Table  1 

/I/I2 "Cmu ~'mw qm 

5 0.7517 0.3013 0.2286 
10 0.9025 0.3109 0.2308 
15 1.0830 0.3432 0.3432 

Table  2 

m Tmu "L'mw qm 

0.5 0.7517 0.3013 0.2286 
1.0 0.6439 0.4836 0.2278 
1.5 0.5323 0.5840 0.2254 

parameter m. From Fig 5 we observe that the secondary 
velocity increases as G increases whereas for negative 
values of G there appears a reverse flow in the secondary 
velocity. Fig 6 shows that the secondary velocity decreases 
as magnetic parameter M increases, whereas it increases 
for greater heat dissipation. 

The mean temperature distribution is shown in 
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T a b l e  3 

G "~mu Zmw qm 

5 0.7517 0.3013 0.2286 
10 1.0540 0.7027 0.2153 

- 5 0.3048 - 0.8632 0.2396 

T a b l e  4 

P Zmu Tmw qm 

0.24 0.7517 0.3013 0.2286 
0.71 0.6897 0.2602 0.6856 
1.0 0.6592 0.2502 0.9716 

T a b l e  5 

E Zmu Zrnw qm 

0.01 0.751 7 0.3013 0.2286 
0.02 0.7713 0.3515 0.21 72 

Grashof number G and Eckert number E but decreases 
with increases in either Hall parameter m or Prandtl 
number P. The secondary shear stress increases with M, 
m, G and E but decreases with increasing Prandtl number 
P. It is also observed that the rate of heat transfer increases 
with increase in magnetic parameter M, Prandtl number 
P and decreases as parameter m, Grashof number G and 
Eckert number E increase. 
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A p p e n d i x  

cx=M2/(1 +m 2) 
A = p 2 - p - ~  

B = m~x 
A t = GA/(A 2 + B 2) 
B 1 = GB/(A 2 +B 2) 

1 1 
~zt = ~ + 2 - ~ [ { ( 1  +4c02 + 16B2} 1/2 +(1 +4ct)] '/2 

1 
,81 = ~---7~-~[{( 1 + 4~t) 2 + 16B2} 1/2 - -  (1 "F 4~t)]'/2 

-%/-" 

R 3 = [ A t ( 1 - A I ) - B 2 ] ( o q  + P )+ f l tB  
R4 = [ s t  + P ] B I  - i l i A  t (1 - A t  ) - B 2] 
a, = (ct2 +,82)[(1 - A,  )2 + B2]/[4~t2 _ 2cqP] 
a2 =2PRa/[(~t +p)2  +,82 
a3 = + P F  +,82] 

1 2 

a 5 = a  1 + a 2 + a  4. 
Vl = 4~2 - 2 ~ t  - 

p2 =(~1 +V)2-(~1 + P ) - ~ - , 8 ~  
P3 = 2,st(cq + P ) - , s t  - / 3  
P4 = ½(a2P2 + a3P3)/(P2a + P]) 

= ½(a2& - a P21/IP  + P])  
P6 = P2 
PT=2,81(~t + P ) - , s t  +fl 
Pa-½(a2P6 + aaP7)/(P~ + p2) 
P9 = ½[aaP6 - a2PT]/(P 2 + p2) 
Pt 0 = 4p2 - 2 P -  ct 

Aa5 alP1 
Pl l  = A 2 + B  2 p 2 + B  2 

Bas atB 
P 1 2 - A 2  + B2 p2 + B2 

C t = - a s A / ( A  2 + B  2) 

C2 = P4 + P8 
C3 = P9 - Ps 
C, = a4Pt o/(p20 + B 2) 
C5 = al Pt / (P 2 + B 2) 

C 6 - - P l t  
C v = P 1 2  
Ca = asB/(A 2 + B 2) 

C9 = P5 + P9 
C t o = P 4 - P 8  
Ct 1 = a4B/(p2o + B2) 
Ct 2 = atB/( P2 + B2) 

a4P 1 o 
p~o+B2 P , - P 8  

a4B 
p~o + B2 t-P5 + P9 
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